

High-performance fluorinated special gas

FITECTIM

(CF₃I / trifluoroiodomethane)

INDEX

What is FITECT (CF ₃ I)?	_	3	Basic information	_	12
Three key features of FITECT (CF ₃ I)	_	4	Product packaging	_	13
Environmental regulation trends	_	5	Safety, laws, and regulations	_	14
Environmental characteristics comparison	_	6	Registration information	_	15
Cover gas for Mg casting application	_	7			
Fire extinguisher application	_	8			
Etching gas application					
Application 1	_	9			
Application 2	_	10			
Reagent application	_	11			

What is FITECT (CF₃I)?

FITECT (CF₃I) is an environmentally friendly special gas that serves as an alternative to chlorofluorocarbons (CFCs).

Tosoh Finechem is the first company in the world to succeed in mass production¹ with our proprietary technology and provide high-quality products.

¹Japan's New Energy and Industrial Technology Development Organization (NEDO) project "Mass production of CFC and halon substitute materials by the world's first synthesis method (2013)" https://www.nedo.go.jp/hyoukabu/articles/201207f tech/index.html

Three key features of FITECT (CF₃I)

Superior environmental characteristics

Short atmospheric lifespan (= 0.005 years) Low GWP¹ (= 0.4) / Low ODP² (= 0)

Application: CFC alternative, etching gas

Non-combustibility

High fire extinguishing performance (flame extinction concentration = 3.0 vol%)

Application: Fire extinguisher, cover gas for Mg casting

High reactivity

Labile C-I bond (= 2.4 eV)

Application: Trifluoromethylation reagent

1 GWP: Global warming potential ($CO_2 = 1$)

2 ODP: Ozone depletion potential

Environmental regulation trends

Environmental characteristics comparison

Item	FITECT (CF ₃ I)	CF₃Br	CF ₄	CHF ₃	SF ₆	CF ₃ CH ₂ F
Abbreviation	-	Halon-1301	FC-14	HFC-23	-	HFC-125
Atmospheric lifespan (years)	0.005	65	50,000	222	3,200	13
ODP ¹	0	19	0	0	0	0
GWP ²	0.4	6,290	6,630	12,400	23,500	1,300

Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

1 ODP: Ozone depletion potential

2 GWP: Global warming potential (CO₂ = 1)

FITECT (CF₃I) has a labile C-I bond and decomposes easily in the atmosphere. It is an environmentally friendly gas with a GWP of less than 1/1000 of conventional fluorinated gases.

Cover gas for Mg casting application

PFAS regulation NOT applicable

Mg alloys are lightweight, high strength, and highly workable. When melting (over 600°C), cover gas is used to prevent ignition from the surface of the molten Mg.

Wheel

Laptop

Drone

Alloy Typo	GWP GWP		Flame retardant properties		Alloy properties	
Alloy Type	Cover gas	(CO ₂ =1)	Flameproof temperature [℃]*¹	Yield strength @0.2% [MPa]	Tensile strength [MPa]	Growth rate [%]
AZ91D	SF ₆	23,500	650 ~ 800	116	202	5.7
AZ91D	FITECT (CF ₃ I)	0.4	650 ~ 800* ²	115	213	6.4

^{*1)} When carrier gas is CO₂.

FITECT (CF₃I) provides high flame retardant properties, high alloy properties and low GWP.

^{*2) 650~750°}C: No ignition occurs.800°C: ignition occurs, but disappears quickly or does not increase.

Fire extinguisher applications

Item	FITECT	Iner	Fluorine fire extinguisher	
	(CF ₃ I)	N_2	CO ₂	CF ₃ Br (halon 1301)
Flame extinction concentration (vol%)	3.0	34	22	3.4~7.0
GWP (global warming potential)	0.4	0	1	7140
State of storage	Liquefied gas	Compressed gas	Liquefied gas	Liquefied gas
Fire extinguishing principles	Inhibition of combustion chain reaction	Smothering combus		Inhibition of combustion chain reaction

FITECT (CF₃I) can efficiently extinguish fire with a small amount of gas and is being considered as a fire extinguishing agent with low environmental impact.

Outdoor tank

Data center

Art museum

Aircraft

Etching gas application 1

UV intensity in plasma

CF CF₂ C₄F₆ CF₄ CF₃I 200 250 300 Wavelength (nm)

Effect on low-k film (SiOC film)

Compared to other fluorine-based gases, FITECT (CF₃I) has a lower UV intensity in plasma, which reduces damage to low-k films (SiOC films) and enables etching without damaging film characteristics (low dielectric constant).

J. Vac. Sci. Technol. A 2008, 26, 875-880.

Etching gas application 2

Amount of F radical in plasma

Wiring sidewall roughness (line edge roughness; LER) 50 nm half-pitch

FITECT (CF₃I) produces fewer F radicals than other fluorinated gases, resulting in lower LER and higher resist selectivity.

J. Vac. Sci. Technol. B 2009, 27, 2, 649–653.

J. Vac. Sci. Technol. B 2009, 27, 5, 2117–2123.

Reagent applications

FITECT (CF₃I) reacts with various substrates and can introduce CF₃ groups, which are indispensable for pharmaceutical and agrochemical intermediates.

- 1) Tetrahedron Lett. 1969, 10, 4095-4096.
- 2) Tetrahedron Lett. 1989, 30, 3159-3162.
- 3) Tetrahedron Lett. 1993, 34, 2169-2170.
- 4) Org. Lett. 2001, 3, 4271-4273.
- 5) J. Am. Chem. Soc. 2009, 131, 10875-10877.
- 6) J. Fluorine Chem. 2010, 131, 98-105.
- 7) J. Fluorine Chem. 2011, 132, 1241-1246.
- 8) License No. 50536222
- 9) Tetrahedron Lett. 1996, 34, 1829-1832.

Basic information

Item	Contents		
Name	Trifluoroiodomethane		
CAS RN	2314-97-8		
Molecular weight	195.9		
Appearance	Colorless gas (20°C)		
Boiling point (°C)	-22.5		
Steam pressure (MPa)	0.427 (20°C)		
Gas density (air = 1)	6.8 (Calculated value)		
Liquid density (g/mL)	2.095 (25°C)		

Appearance during pressurized liquefaction

Product packaging

10 L cylinder

47 L cylinder

Other packaging are also available.

Safety and regulations

Safety items	Result	
LC ₅₀	27.4% – 4 hrs. (rats)	
Ames test	Positive	
Chromosome aberration test	Positive (micronucleus test)	
Work environment concentration	500 ppm(8h, TWA)	
Bone marrow chromosome aberration test	Negative	
Irregular DNA synthesis test	Negative	
Carcinogenicity test	Not suspected to be carcinogenic	
Repeated dose toxicity study	No effect (rats, 28 days)	

Toxicol. Ind. Health. 2020, 36, 310-321.

Safety and regulations

List name	Registration information
TSCA (US)	Yes
DSL (Canada)	No
REACH (Europe)	Pre-registered
AICS (Australia)	Yes
MITI (Japan)	No
KECL (Korea)	Yes

Tosoh Finechem Corporation

Location

Sales Headquarters: 2-1Yaesu 2-chome, Chuo-ku, Tokyo 104-0028, Japan Head Office and Factory: 4988 Kaisei-cho, Shunan, Yamaguchi Prefecture 746-0006, Japan

Business

Organometallic compounds: Aluminum alkyls, aluminoxanes, organometallics

Bromine compounds: NaSS, styrene derivatives, alkyl bromides Fluorine compounds: TFEA, FITECT (CF₃I), fluorine compounds

